Confidence-Weighted Linear Classification for Text Categorization
نویسندگان
چکیده
Confidence-weighted online learning is a generalization of margin-based learning of linear classifiers in which the margin constraint is replaced by a probabilistic constraint based on a distribution over classifier weights that is updated online as examples are observed. The distribution captures a notion of confidence on classifier weights, and in some cases it can also be interpreted as replacing a single learning rate by adaptive per-weight rates. Confidence-weighted learning was motivated by the statistical properties of natural-language classification tasks, where most of the informative features are relatively rare. We investigate several versions of confidence-weighted learning that use a Gaussian distribution over weight vectors, updated at each observed example to achieve high probability of correct classification for the example. Empirical evaluation on a range of textcategorization tasks show that our algorithms improve over other state-of-the-art online and batch methods, learn faster in the online setting, and lead to better classifier combination for a type of distributed training commonly used in cloud computing.
منابع مشابه
Improving the Operation of Text Categorization Systems with Selecting Proper Features Based on PSO-LA
With the explosive growth in amount of information, it is highly required to utilize tools and methods in order to search, filter and manage resources. One of the major problems in text classification relates to the high dimensional feature spaces. Therefore, the main goal of text classification is to reduce the dimensionality of features space. There are many feature selection methods. However...
متن کاملBased on Weighted Gauss-Newton Neural Network Algorithm for Uneven Forestry Information Text Classification
In order to deal with the problem of low categorization accuracy of minority class of the uneven forestry information text classification algorithm, this paper puts forward the uneven forestry information text classification algorithm based on weighted Gauss-Newton neural network, on the basis of weighted Gauss-Newton algorithm, the algorithm is proved via singular value decomposition principle...
متن کاملArabic News Articles Classification Using Vectorized-Cosine Based on Seed Documents
Besides for its own merits, text classification (TC) has become a cornerstone in many applications. Work presented here is part of and a pre-requisite for a project we have overtaken to create a corpus for the Arabic text process. It is an attempt to create modules automatically that would help speed up the process of classification for any text categorization task. It also serves as a tool for...
متن کاملChinese Text Categorization via Bottom-Up Weighted Word Clustering
Most of the researches on text categorization are focus on using bag of words. Some researches provided other methods for classification such as term phrase, Latent Semantic Indexing, and term clustering. Term clustering is an effective way for classification, and had been proved as a good method for decreasing the dimensions in term vectors. The authors used hierarchical term clustering and ag...
متن کاملNeighbor-weighted K-nearest neighbor for unbalanced text corpus
Text categorization or classification is the automated assigning of text documents to pre-defined classes based on their contents. Many of classification algorithms usually assume that the training examples are evenly distributed among different classes. However, unbalanced data sets often appear in many practical applications. In order to deal with uneven text sets, we propose the neighbor-wei...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Machine Learning Research
دوره 13 شماره
صفحات -
تاریخ انتشار 2012